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A ZERO-ENTROPY MIXING TRANSFORMATION 
WHOSE PRODUCT WITH ITSELF 

IS LOOSELY BERNOULLI 

B Y 

MARLIES GERBER 

A B S T R A C T  

A zero-entropy mixing transformation T is constructed such that T x T is 
loosely Bernoulli (LB). Previously known examples were not mixing. The 
construction is then generalized to yield a zero-entropy mixing transformation T 
such that the n-fold product T x - • • x T is LB for each positive integer n. 
Furthermore, a flow with the same properties is obtained. 

§1. Introduction 

A few years  ago, in connect ion with the p rob lem of classifying measure-  

preserving flows up to a time change  on the orbits, the loosely Bernoull i  (LB) 

proper ty  was in t roduced  by J. Fe ldman  [2] and, independent ly ,  by  A.  Katok  [4] 

(in the case of zero entropy) .  (See also E. Sataev [13].) The  LB proper ty  is 

obta ined  by replacing the H a m m i n g  metric,  d, on sequences  of symbols  in D. 

Orns te in ' s  very weak Bernoull i  (VWB) proper ty  by a coarser  metric,  now 

called /~ 

If a = ( ao , ' "  ", a~-~), /3 = (/3o," • ",/3N-~) are sequences  of symbols,  then 

fN (a, /3)  = 1 - 1 max {k : there  exist sequences 

(iz,''',ik) and ( j l , . . . , j ~ ) s u c h t h a t  

0 _ < i 1 <  . . .  < ik<--N-1, 0 = < j l < . . . < j / = < N - 1  

with a, =/3s,, 1 < < k } ~ m  m 
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i.e., we take the best possible match allowing some "stretching" of the 

sequences. For a zero.entropy process (T, ~) ,  the LB property reduces to the 

following: for every e > 0 there exists a positive integer N and a set A of 

measure greater than 1 -  e such that fN(a , /3)< e whenever a = (ao,'" ", o~-1), 
/3 = (/3o,'" ",/3~-1) are the T-~-N-names  of points in A. (Here symbols are 

identified with elements of ~, and a point x has T -~ -N-name  a = (s0," • ", aN-l) 

if T'x E P,~, ~ ~ for 0 =< i =< N - 1.) A transformation T is said to be LB if (T, fg) 

is an LB process for every finite partition ~. 
The LB property is preserved under Kakutani equivalence [2], [13], and 

an LB transformation is Kakutani equivalent to a Bernoulli shift if it 

has positive entropy and to an ergodic group rotation if it has entropy zero [5], 

[13], [16]. 
The class of LB transformations behaves well under most functorial opera- 

tions, but Ornstein showed that T x T need not be LB even if T is LB (see D. 

Rudolph [12]). The difficulty in getting T × T to be LB is that pairs of sequences 

of symbols must be matched, and once we decide how to make an )? match for 

the first sequences in the pairs (i.e., how to choose i~, . . . ,  ik and j l , .  •., jk in the 

definition above), then the "stretching" in the second sequences in the pairs is 

forced. The problem of getting LB Cartesian products of transformations was 

studied by L. Swanson [14], and  M. Ratner showed that if T is any transforma- 

tion from the horocycle flow, then T is LB [9], but T x T is not LB [10]. Then A. 

Katok pointed out, in a conversation, a simple example of a zero-entropy weakly 

mixing T with T × T LB. However, his transformation is not mixing, and it 

seems more difficult to get such an example to be mixing. In this paper, we 

combine Katok's construction with a construction introduced by A. Rothstein 

[11] to obtain a zero-entropy transformation whose product with itself is LB and 

which, in addition, satisfies the "Ver~ik property." This property is a weakening 
of the VWB property and it implies mixing of all orders. Thus, we obtain a 

zero-entropy T which is mixing of all orders and such that T x T is LB. L. 

Swanson [15] has extended Katok's method to obtain a zero-entropy T such that 

each n-fold product T x • -". × T is LB. Her example, like Katok's, is not mixing. 

Here we obtain such an example which is mixing of all orders. Finally, we build a 

flow analogue of this example. 

This work is part of the author's Ph.D. thesis, which was written at the 

University of California at Berkeley under the supervision of J. Feldman, to 

whom the author expresses her sincere thanks for many helpful discussions and 

consistent encouragement. Financial support of this work and prior graduate 

study was provided in part by an NSF graduate fellowship. 



Vol. 38, 1 9 8 1  ZERO-ENTROPY TRANSFORMATIONS 3 

§2. Katok's example 

This transformation is built by a cutting and stacking argument that is a 

modification of Chacon's method of obtaining a weakly mixing transformation 

that is not mixing [1]. We will describe Katok's example, S, inductively, in terms 

of the parameters g ,  g2, • • ". Let the first tower simply have one level, which we 

take to be an interval. Label the points in this interval 1. To obtain the (n + 1)th 

tower from the n th  tower, first add an interval over the right half of the nth 

tower and label the points in the added interval 0. Then divide this modified nth 

tower into 2g, subcolumns of equal width. The (n + 1)th tower is the result of 

stacking the (i + 1)th subcolumn above the ith subcolumn for 1 =< i < 2g, - 1. 

For n _-> 1, S maps each point in the nth tower which is not in the top level to the 

point directly above it in the next level. (See Fig. 1.) Let Y, be the union of the 

intervals in the nth tower and let Y = (.J T Y,. Then Y has finite Lebesgue 

measure, and S is defined almost everywhere on Y. Since S has rank 1, it has 

entropy zero. By the same argument that is used for Chacon's example, S is 

weakly mixing, but not mixing. Let ~ be the partition of Y into two sets, 

according to which of the labels 0, 1 a point has. Then ~ is a generator (for the 

Lebesgue measurable sets) under S, and if gl, g 2 , " "  grow sufficiently rapidly, 

then (S, ~ )  is LB. This last assertion follows easily from an equivalent formula- 

tion of the zero-entropy LB property given in proposition 1 of Katok and Sataev 

[6]. 

nth lower. 

J • 
Y 

g. subcolumns g. subcolumns 

added 
interva] 

Fig. 1 
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§3. The Vergik property 

We say that a process (U, ~ )  is a Vergik process (or, briefly, a V process) if, for 

every e > 0, there is an N such that if L, M > N then 

U-i~,  U - ~  x V U-i~t < e. 
- - L  1 

The ~ distance between the ordered partitions V YL U - ' ~  and V°_L U - ~  x 

V ~ U - ' ~  is defined analogously to the d distance, with the d distance on names 

replaced by 

e(( ,~-~, ' '  ", s 0 , "  ", ~,~), (t3-~,"" " , / 3 0 , - . . , / ~ ) )  

= max [d ( (a -L , . .  ", s0), (/3_~,. . . , /30)),  d ( ( a , , . . . ,  aM), (/3~,. . . , /3,~))].  

A simple argument shows that this property is equivalent to the following: for 

every e > O, .there is an N such that if L > N then 

) U-'R,  U- i~  x V U - ~  < e. 
- L  1 

A transformation U will be called a Ver~ik transformation (or, briefly, a V 

transformation) if (U, ~ )  is a V process for each finite partition ~.  It is easy to 

check that products, factors, and d-limits of V processes are V; also, powers and 

roots of V transformations are again V transformations. It is also easy to see that 

a VWB process is a V process. Vergik conjectured (in a private communication 

to D. Ornstein) that the converse might also be true, but A. Rothstein, in his 

Ph.D. thesis written with Ornstein, obtained counterexamples to this conjecture 

[11]. Rothstein found both LB and non-LB examples of V transformations of 

zero entropy, and he also has an example of a V transformation which is K but 

not Bernoulli. 
The V property generalizes to flows in a very natural way. We say that a flow 

{4', : t ~ R} has property V if for every finite partition ~, 

limd( V ~b_,~, V cbL,~x V ¢k",~)=O, 
n~ \te[-n, nl tel-~Ol te(O,nl 

where 4~',, 4"~ are defined on X x X by 

~b'(x,y)= (4~,(x),y) and ~b'(x,y)= (x, ~b, (y )). 



Vol. 38, 1 9 8 1  ZERO-ENTROPY TRANSFORMATIONS 5 

The following are equivalent: 

(i) The flow {4~, : t E R} has property V; 

(ii) ~b, is a V transformation for each t #  0; 

(iii) ~b~ is a V transformation for some to. 

The equivalence of (ii) and (iii) was already observed by Rothstein. These 

arguments are based on standard techniques of passing from continuous names 

to discrete names and back (see, e.g., D. Lind [7]). 
Rothstein's examples can all be generalized to flows. Here we construct an 

example of a flow {Oh,: t E R} which is V (and hence mixing of all orders) such 

that each product flow {~b, × • • • x th,: t E R} is LB. 

§4. Construction of a zero-entropy V transformation T such that T x T is LB 

Let ~1, ~2," • • be a sequence of rational numbers in (0, ¼) such that l i m . ~  ~. = 

O and E7 a4 = o0. Let 31, ~ 2 , ' "  ° be a strictly decreasing sequence of numbers in 

(0, ~) such that E7 ~/ff, < 00. We will describe our transformation, T, in terms of 

t~l, a2," • ", 8L, 82," • ", and the positive integer parameters h0, h ',, hL, hr, h2 , "  ", on 

which some conditions will later be imposed. 

We obtain T from a "block construction" as follows. A 0-block consists either 

of the pair of symbols (1,2) or a single symbol chosen from {3,4, • •., ho}, where 

ho = 3. For n => 0, we construct (n + 1)'-blocks from n-blocks, and (n + 1)-blocks 

from (n + 1)'-blocks. Here and throughout this paper we will take all n-blocks 

[n'-blocks] to be equally probable. By this we mean that the conditional 

probability of being in a particular n-block [n'-block] given that we are at the 

beginning of some n-block [n'-block] is independent of the particular n-block 

[n'-block] selected. (Or, equivalently, the columns in the corresponding n-tower 

[n'-tower], to be constructed below, will all have the same width.) Let r. [r'] be 

the number of n-blocks [n'-blocks]. We require that h.'+l be chosen so that 

a,+lh~'+l is a multiple of r,, for each n => 0. To build the (n + 1)'-blocks, first order 

the n-blocks in some manner and let a,+~h'+~ n-blocks go in cyclically, i.e. the 

n-blocks are listed in order oL,+~h'+Jr, times; then let a,+th'+l n-blocks go in 

cyclically with a 0 added at the end of each cycle of n-blocks; finally, let 

(1 - 2a,÷l)h "+1 n-blocks go in independently. The (n + 1)-blocks are constructed 

by concatenating h,+l (n + 1)'-blocks independently. 

This construction may be realized by cutting and stacking intervals. We will 

indicate briefly how this goes; for details, see [3]. Begin by partitioning the unit 

interval into h 0 -  1 intervals of equal size, and label them 1,3,4,5, • •., ho. Above 

the interval labeled 1, add another interval, and label it 2. The result is what we 
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(a) n- tower  

1st 2nd 3rd 
column column column 

(For simplicity we are assuming r, = 3, 
i.e. the  n- tower  has three columns.)  
Order  the  columns in some way. 

M. G E R B E R  Israel J. Math.  

(h) ,'1 

Z \ 
Otn+ I \~ 

added level 

\ 
\ 

Divide each column into three sub- 
columns with proport ions or..1, an+t, 
1 -  2a,+,,  and add a level above the sec- 
ond subcolumn of the  last column. 

(c) 

Oln+l ~n+l 

tower 

1 - 2a.+~ 1 - 2o~..~ 1 - 2a.+1 

Stack the  two a .÷l -subcolumns of successive col- 
umns  in the  n-tower in order, as indicated. Divide 
each half of the  resulting column into a,÷~h ',+#rn 
subcolumns of equal  width. Then  stack these as in 
Katok 's  example.  The  union of the ( 1 - 2 a . . 1 ) -  
subcolumns of the  columns in the n- tower  is a tower 
isomorphic to the n-tower,  1 - 2 a , + t  the width of 
the  n-tower.  Call this tower 7. In order  to do the  
independent  stacking, r will be divided into more  
towers isomorphic to the n-tower.  (The picture has 
been expanded horizontally for diagrammatic  pur- 
poses only.) 
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(d) 

I I I I  
I I l l  
I I I I  
I I I I  

I l l  
I l l  
i l l  
BiB 
i l l  l l l l  I I 

I I I I  I I 

independently cutting 
and stacking the tower r 

part of the  added level 

Step 1. Above  the  part of the added level where the t ransformation was not already defined in 
(c), place an isomorphic copy of the n-tower,  1/h ',+z the width of the n-tower,  constructed from r. 

Step 2. From what remains of ~- after step 1, construct r, towers isomorphic to the n-tower,  each 
1/r,h'~ ~ the width of the  n-tower.  Stack one of these towers above each of the  co lumns  of the tower 
constructed in step 1. 

Step 3. From what remains of ~" after step 2, construct  r2, towers isomorphic to the n-tower,  each 
1/r2.h'+~ the width of the  n-tower.  Stack one of these towers above each of the columns of the tower 
constructed in step 2. 

Repeat  for a total of ( 1 -  2a.+~)h.'+l steps. 
(The picture has now been drastically expanded in the horizontal direction, again for diagrammatic 

purposes  only.) 

Fig. 2. Making (n + 1)'-tower f rom n- tower  
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call the 0-tower. (We call a union of a finite number of columns of intervals a 

tower, even if the columns have different heights.) We now describe how to get 

the (n + 1)'-tower from the n-tower. Partition the n-tower into r, columns 

according to the sequences of symbols obtained as we read labels of points in 

vertical lines. These columns will all have the same width. Divide each of these 

columns into three subcolumns with widths in proportion to a,+l, a,+l, 1 - 2a.÷1. 

Above the second subcolumn of the last column add another level and label it 0. 

The first subcolumn of each column is divided up further to construct the initial 

a,+lh'+~ n-blocks; the second subcolumn is similarly used to construct the 

second group of a . . lh '+ l  n-blocks, with the 0 at the end of each cycle coming 

from the added level. The third subcolumn is used for the independent 

concatenation of n-blocks. (See Fig. 2.) The (n + 1)-tower is obtained by 

breaking the (n + 1)'-tower into some thinner towers isomorphic to itself, and 

stacking these in a manner similar to that shown in part (d) of Fig. 2. 

For  n =>0, let F, IF'.+1] be the set of points in the base of the n-tower 

[(n + 1)'-tower], let X. be the set of points in the n-tower (which is the same as 

the set of points in the n'-tower, if n >- 1), and let v, be normalized Lebesgue 

measure on X,. Let tz, = v, x v. on X. × X.. Let X = U o X,, and let ~ be the 

partition of X into ho+ 1 sets according to which of the labels 0, 1, • •., ho a point 

has. Define a partition ~ ,  [ ~ ' ]  of X,  by ~ ,  [ ~ ' ]  = {J: J is a level in a column of 

the n- tower [n'-tower], i.e. J is the set of points in a certain position of a fixed 

n-block [n'-block]}. 

We now place some requirements on ho, hi,  hz, • • • to ensure that X will have 

finite Lebesgue measure. We will do this by forcing ~,. (X, - X , _ O / u . ( X , _  0 to be 

less than ½6., for each n _-> 1. (Note that ~7 6. < oo.) For n -> 1, let l. be the sum of 

the lengths of the (n - 1)-blocks, i.e. the length of a cycle of (n - 1)-blocks. Then 

,,. ( x .  - x . _ l )  = 
v . (X.- l )  l ." 

By a very crude estimate, we have I, > h,-l,  for n => 2; also, 11 = h0. Thus, by 

requiring h . _ l > 2 a , / 6 , ,  for n-> 1, we get 

(1) v . ( x .  - x . _ , )  <½8.. 
~ . ( X . - l )  

Hence, we can get X to have finite Lebesgue measure. Normalize this 

measure, call it v, and let /z = ~, x ~, on X x X. 

We now pause to obtain some related estimates involving/z,, which we will 

need later. Note that 
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1 -  ~.(X._~ x X . _ 0 :  1 -  u.(X._0~ < 2(1 - u.(X._I)) < 2s 1 - t  l~rt(Xn--1)) ~ 6n. 
l.,. ( Xn -1) 

Then if B CX._I x X.-t,  

/x .(B) =/.t .  (X._, x X._OI.t._1(B ) 

(2) -> /x ._ , (B) -  (1 - / z .  (X._, x X.-1)) 

> / z . _ I ( B ) -  6.. 

Define a partial automorphism T. [T.+I] on X.  [X.+I], n = 0, by letting T. 

[T'+1] map each point in the n- tower [(n + 1)'-tower] to the point above it in the 

next level, if there is one; otherwise leave T. [T'+I] undefined there. Then 

To C T~ C T1C T'~ C T 2  C • • ". Let T be the transformation on X which is the 

common extension of To, T~, T1, T~, T z , "  ". This defines T almost everywhere 

on X. 

It can easily be seen from an inductive argument that for each n',  if the 

3~-name of some x E X from j to k agrees with that of some n'-block then we 

must have TJx E F'. and Tk'x E F', where k '  = k + 1 if Tk+Ix ~: ~o, k '  = k + 2 

otherwise. (Note that O's do not occur consecutively in any ~-name. )  Hence,  if 

~ ' .  is the partition {F', X - F ' } ,  then 

k k 

V T- i~ ' ,C  V T-i~,  
i J 

provided that k - j is sufficiently large so that any ~ -n a me  of length k - j + l 

must contain an entire n'-block. Thus ~ ', C V ~-= T - ~  for each n -_> 1. Since the 

"'s generate (the Lebesgue sigma-field), this implies that ~ generates under T. 

(Alternatively, we could simply restrict T to the sigma-field generated by ~.) 

For almost every x E X, there are infinitely many n such that T-ix lies in the 

initial a.h '. (n - 1)-blocks in an n'-block. Now if x and n satisfy this condition, 

and if we are given the past times i at which T~x E F', then the time zero 

~ - n a m e  of x is determined. But from the previous paragraph 

- 1  - 1  

V T - ~  "" C V T - ~ ,  for each n _-> 1. 

Hence,  for almost every x, the past ~ - n a m e  of x determines the time zero 

~P-name of x. Thus h ( T ) =  h(T, ~ ) =  0. (This can also be seen via a name- 

counting argument.) 

By Rothstein's arguments [11], T is a V transformation provided that 

ho, hl, hi, hl, h 2 , "  • grow sufficiently rapidly. The idea of his argument is to 
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approximate the (T, ~ )  process in finite-dimensional d by the Markov shifts 
obtained by concatenating n-blocks (or n'-blocks) independently. With the 

appropriate growth condition on the parameters (which depends on how quickly 
the VWB property of the Markov shifts constructed takes effect), the VWB 

property of the Markov shifts will copy over to yield property V for T. 

§5. Proof that T × T is LB 

This proof involves a refinement of the nesting techniques introduced in 

Weiss' Notes ([16], section 7) and in the work of Katok and Sataev [6]. Let s~ = 1, 

s, = min [1, 50~¢/8._~+ ( 1 -  a~)s,-~], n = 2 , 3 , . . . .  Note that lim,~®s. = 0, be- 
cause Y.TX/~ < ~ and X~'a~= o0. We will show inductively that, for each n _--- 1, 

there is a set Bn CX,  × X, and an integer N, such that 

f (a) /~. (B.) > 1 - 8., (b) B.  is a union of atoms in ~ .  x ~ . ,  
(3) (c) each point of B,  is of the form (x, y), where x and y both 

have at least N,  - 1 points lying above them in the n-tower, 

(d) if p,q E B , ,  then f~(p,q)<=s,. 

(In this section we will always take the f distance with respect to (T x T)- 

( ~  x ~)-names.)  More precisely, for each n > 1, if h0, h I, h~, h~, h2,'- ", h'-~, h.-1 
have been chosen to make (3) true for n - 1, then by requiring h" and h. to be 
sufficiently large, we can make (3) hold for n. At each stage, of course, h" and h, 
may have to be made larger than what would be required to make (3) true, in 

order to obtain (1) and property V in addition. 

We proceed with the proof of (3), which clearly implies that T x T is LB. For 

n = 1, (3) holds trivially by taking Bx = X~ x X~, N~ = 1. Now assume n > 1, 

ho, h ~, h~, h ~', h 2 , "  " ", h'-~, h,-~ have been chosen, and there exist B,-1, N,_~ such 

that (3) holds with n replaced by n - 1. Choose L,  sufficiently large so that 

/ . ( / . + 1 ) < ~ .  and - ~ < ~ . .  
L.  

Require that h '. be sufficiently large so that 

Let A~ be the set of x such that x, Tx, . . . ,  TL"-~x are in the first group of a ,h"  

( n - 1 ) - b l o c k s  in some n'-block, and let A~ be the set of y such that y, 
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Ty, . - - ,  TL--ly are in the part of some n'-block which consists of the second 

group of a.h'.  ( n - 1 ) - b l o c k s  with a 0 added at the end of each cycle of 

(n -1 ) -b locks .  Let A.  = A~.×A~. Note that if p = ( x , y ) C A . ,  the T-!9-L,,- 
name of x has period I. and the T - ~ - L . - n a m e  of y has period I. + 1. Hence the 

(T × T)- (~  x ~ ) -L . -name  of p has period l.(l. + 1). It follows that if p, q E A., 

then 

(4) )~. (p, q ) =  < l.(l.L____~ --<6"'+ 1) 

If K. denotes the sum of the lengths of the first group of a,,h ',, (n - 1)-blocks in 

an n'-block, then we have 

v " - l ( a " ) = a " (  1 L " - l ) > a " (  1 -  L - - ~ - " ' ) > ~ K ~  a . h . ,  a . - 6 . .  

Similarly, v._l(A2.n X._1)> a . -  6.. Then, using (2), we obtain 

(5) i z . ( A . ) > l x . _ , ( A . n ( x . _ , x X . _ , ) ) - 6 . > ( a . - 6 . ) 2 - 6 . > a ~ . - 3 6 . .  

Let 9 .  be the partition of F. into rn sets such that two points of F. are in the 
same atom of 9 .  if and only if they are in the same column of the n-tower, i.e. 

they are in the same n-block. Let or. be a Bernoulli shift on F. with independent 

generator 9 . .  Define 7~. to be the extension of T. to all of X. obtained by 

mapping a point in the n-tower which has no point above it and which is in the 

same vertical line as z E F. to o-.(z). Then (7~., ~'~) is a Markov process 

corresponding to the independent stacking of n'-blocks. Note that once 

ho, hl, hi, hl, h2,'" ", h'_~, h._l, h" are chosen, (T., ~ ' )  is isomorphic to the same 

Markov shift regardless of the choice of h.. This Markov shift must be mixing 

because there are two n'-blocks whose lengths differ by one. We now apply the 
ergodic theorem twice to the product Markov process (T. x ~., ~ "  x ~ ' ) .  First 
note that A.  and B,,-1 a r e  both unions of atoms of ~ "× ~ ' .  Also, by (2) and (3), 
we have 

~ . ( B . _ ~ )  > / x . _ , ( B . _ ~ )  - 6 .  > 1 - 6 ._~ - 6 .  > 1 - 2 6 . _ , .  

The basic idea now is to choose h. sufficiently large so that the occurrences of A.  

and B.-I  are well-distributed in the ~ ' x  ~ ' - n a m e s  of most points, in order to 

combine the f-matchings obtained from A.  in (4) and from B._~ in (3). Begin by 

choosing M.  sufficiently large so that L./M. < 6. and such that the set 
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(6) 

t]. = {(x,y)E X. x X.: frequency of (?'. x T.)'(x, y) 

being in A., for 0 =< i -< M. - 1, is greater than a ~ -  48.} 

has/z.-measure greater than 1 -8 . .  Next choose N. sufficiently large so that 
M . / N .  < ~. and such that the set 

(7) 

V. = {(x, y) E X. x X.: As i ranges over [0, N.), frequency of 
(T. x 2v.y(x,y) being in t]. is greater than 1-28. ,  fre- 
quency of (2r. x T.) '(x,y) being in A. is greater than 
c ~ -  48., and frequency of (T. x T.)'(x, y) being in B._~ is 

greater than 1 - 38._1} 

has/z.-measure greater than 1 -  ~8.. Now require h. to be sufficiently large so 
that N . / h .  < 8./8. (Note that even though we actually defined 7~. in terms of h., 
the choices of iV/., N. depend only on the isomorphism class of (7~. × 7~., 
~ ' ×  9~'); so the order of choices is okay.) Let G,~ be the set of points in X. 
having at least i - 1 points above them in the n-tower. If (x, y) E (G,~ × G,~,), 
then the (7". x 2v.)-(~'x ~ ')- i-names and the ( T x  T)-(9~'x 9~')-i-names of 
(x, y) agree. Let U. = I]. fq (G,,M.-~ x G,~m.-~). Then the points in U. satisfy the 

frequency condition in (6) with T. replaced by T. Let 

B. = V. O (G..¢~.-,+<m._, x G n,(Nn-I)+(M.-1))" 

Since v. (G,~N.-I~-,~-o) > 1 - (N,, + M.) lh .  > 1 - 2N. /h .  > 1 - ~8., we have 

tz. (G,~N.-,+~m.-~> × G,,¢N.-~>,~m.-~)) > 1 - ½8.. 

Then/x.(B.)  >/x.(V.)  - ½8. > 1 - &. If (x, y) E B., the frequency conditions in 
(7) hold with 2r. replaced by T and t]. replaced by U.. Note that B. is a union of 
atoms of 9t. × 9~., as required. Let p, q ~ B.. We will show that these frequency 

conditions imply that [N.(P, q) < s.. 
The frequency of i E [0, N.) such that (T × T)~p E A .  is greater than c ~ -  48.. 

Partition the sequence of points p, (T x T ) p , . . . ,  (T  × T)~- lp  except for begin- 

ning and end into disjoint strings of length L.. There are L. ways of doing this, 
and for at least one of them, the frequency of L.-strings which start with a point 

in A. is greater than c ~ -  48.. Fix such a choice of L.-strings and let $1, $2 ,"  ", S, 

be a listing, in order, of all of these strings except those which contain points 
within M. of the end of the sequence p, (T x T ) p , . . . , ( T x  T)~-Ip. Since 
(M. + L . ) / (N.  - 2L.) <28., the frequency of i E [1, t] such that S~ starts with a 
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point in A,  is greater than a ~ - 6 6 . .  The frequency of i E [0, N, )  such that 
(Tx  T)'qE U. is greater than 1 - 2 6 . .  Write down the sequence q, 
(T× T)q, . . . , (Tx T)N.-1q directly below the sequence p, ( T x  T)p,..., 
(TxT)N.-Ip. Since all but at most 2 L . + M ,  of the sequence p, 

(Tx  T)p,.. . ,(T× T)~-lp is contained in some S,, i E [ 1 ,  t], and 

(2L, + M,)/N, < 26., the frequency of i E [1, t] such that some point written 

below S~ is in Uo is greater than 1 -  46,. Thus, for i E [1, t], with frequency 

greater than a ~ -  106, we have both that S, starts with a point in A.  and that 

there is a point written below S~ that is in U.. Fix, for the moment, an i such that 
these two conditions hold. Let S, = ( ( T x  T)"p,. . . ,(Tx T)a÷L'-lp) and let 
j E [0, L,)  be such that (T x T)°+Jq E U,. Then, by the definition of U., the 

frequency of rn ~. [0, M, ) such  that (T x T)~+~+"q E A. is greater than a~. - 48,. 

Since j/M. < 8., this implies that the frequency of m E [0, M, )  such that 

( T x  T)a+"q E A. is greater than a2.-58.. We now shift the sequence q, 

(T x T)q,. •., (T x T)N.-1q to the left by M. - 1 units, one unit at a time, and 

apply a "Fubini argument" as in Weiss' Notes ([16], fig. 1, p. 7.13). From this we 

see that there exists m E [0, M, )  such that if we shift the sequence q,(Tx 
T)q,..., (T x T)N.-1q to the left by m units, then for i E [1, t], with frequency 
greater than ( a ~ -  1 0 8 , ) ( a ~ -  56,), both S~ and the string directly below Si start 

with a point in A,. Let I1 be the set of i E [1, t] for which this is true. For the rest 

of the argument, we leave the bot tom string shifted m units to the left relative to 

the top string. For each i E [1, t], let the string below S~ be 4. By (4), for i E I1, 

(8) 

Let 

(9) y = [ ~ >  (a2. - 106.) ( a ~ -  58,) > a ] -  158,. 
t 

Since all but at most 26, of the points in the sequence p, (T × T)p,..., (T x 
T)~-'p are contained in some S, and the frequency of being in B,_] among 
points in this sequence is greater than 1 - 38,_1, we know that among the j ' s  such 

that (T x T)'p is in some Si, the frequency of being in B.-1 is greater than 
1 - 58._1. Because this is also true if p is replaced by q and S~ by S~, it follows that 

among the j ' s  such that (T x T)Jp is in some S, the frequency that both (T x T)Jp 
and the point below (T × T)Jp, namely (T × T)J÷"q, are in B,-1 is greater than 

1 - 108,_1. Hence, for i E [1, t], with frequency greater than 1 -  N/J06,-1, S~ 

satisfies the condition that with frequency greater than 1 - N/108,_1, a point in S~ 

and the point in ~ below it are both in B,-1. Le t /2  be the set of i E [1, t] - 11 for 
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which this is true. Then 

(10) 
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1121 > 1  X/10&_l 
t -II ,  I 1 - y  

We now fix i ~ / 2  and estimate f(S~, ~) .  Partition all of S, except beginning and 

end into strings of length N. 1 such that with frequency greater than 1 -  

\ / f ( & _ l ,  a string starts with a point such that both it and the point listed below it 

are in B,_x. Let these strings be S~, • •., S~, and let the strings directly below them 

be S] , . -  -, .~. Then fN._,(Si, S~) <-- s._~, j E [1, r], with frequency greater than 
1 -  N/108._~. Since N._dL.  < 6., all but at most 26. of the points in S~ are in 

some S{, j E [1, r], and we have that for i E I2, 

(11) f~.(S, ,~)<s._,+X/108,_~+28.  < s._, + 6V'ff._,. 

Combining (8), (9), (10), and (11), we finally obtain 

r ~/lOT---~ + 6X/8-~_1] 
1- ' ) ,  +s._x 

< 13V8._I + (1 - 

< 13X/8._i + (1 - [a 4 -  156.])s._, 

< 28X/&_, + (1 - a4.)s._~. 

Thus, fr,. (p, q) =< s.. []  

§6. Modifying the construction of T to get all n-fold Cartesian products 

T ×  • ?- × T to be LB 

Let o~, a2,. • ", 81, 8 2 , - "  be as before, except we now require that XT=~ a ', = oo 

for each positive integer j. We inductively define a sequence sl, s2 , " "  in (0, 1] 

and a sequence of nonnegative integers ko, k l , "  ". Let ko = 0. For each positive 

integer j, let 

&,_,.,= 1; s. = min[1,50X/~-~-~+(1- u~J)s.-,], n = k , _ , + 2 , . - - , k ,  

where kj is chosen so that kj > kj_~ + 2, ski < 1/], and for n > kj, ( / +  1)a. < 

1/(i + 1). For n > 1, define j. to be the integer such that kj.-1 < n N kj. Then we 
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have  j , a ,  < 1/j. ; hence  l im,_~ j , a ,  = 0. This  will be  used to ensure  that  T satisfies 

p rope r ty  V. T h e  const ruct ion of T will be  descr ibed in te rms  of 

a~, az, • • ", 61, 62, • • ", jl, j2," • ", and the posi t ive in teger  p a r a m e t e r s  

ho, h '~, hi, h~', h2,- • ". T o  m a k e  cer tain that  the space on which T will be  def ined 

has finite measure ,  we need  the  following. 

LEMMA. Given e > 0 and a positive integer j, there exists a positive integer 

M = M ( e ,  j )  such that if  N is an integer with N >- M,  then there exist positive 

integers ml,  • • ", mj such that N + m~, N + m2, • • ", N + mj are pairwise relatively 

prime and m~/N < e, 1 < i < j. 

T h e  proof  of this l e m m a  is easy and will be  omi t ted .  

W e  p roceed  with the  "b lock  cons t ruc t ion"  for  T. T h e  0-blocks are def ined as 

before ,  where  we require  h o > m a x ( 2 ,  al/6~), and we again construct  (n + 1)'- 

blocks f rom n-blocks ,  and (n + 1)-blocks f rom (n + 1)'-blocks, for  n > 0. Again  

let 1,+1 be the sum of the lengths of the n-b locks ;  let r, [ r ' ]  be  the n u m b e r  of 

n -b locks  [n ' -blocks] .  

W e  now indicate how to build (n + 1) '-blocks f rom n-blocks ,  for  n _->0. 

Choose  posi t ive integers  m.~Ll, • • ", m.+Lj.+, such that  l.+~ + m.+l.~, • • ", I.+~ + 

m.+L~.+, are pairwise relat ively p r ime  and 

mn+l,i ~n+l 
1.~ < . T - - - - - - ,  for  1 =< i _<- j.+l. 

f n +  10lfn + 1 

(It will be  shown inductively that  this is always possible;  see the next  pa ragraph .  

In the case n = 0, this is clear,  since jl = 1 and l~ = ho, and we can simply take  

m1,1 = 1.) W e  requi re  that  h '+ l  be  chosen so that  a.+lh'+l is a mul t ip le  of  r.. T o  

build the  (n + 1) '-blocks, first o rde r  the  n -b locks  in s o m e  m a n n e r  and  let 

a.+lh'+~ n-b locks  go in cyclically with m.+L1 O's added  at the end  of each cycle; 

• • • let a.+~h '.+1 n-b locks  go in cyclically with m.+Lj.+, O's added  at the end of each 

cycle; finally, let ( 1 -  j.+~a.+~)h'.+~ n-b locks  go in independent ly .  

As  before ,  we construct  (n + 1)-blocks by conca tena t ing  h.+~ (n + 1) '-blocks 

independent ly .  W e  require  that  h.+~ > M(6.+2/j2.+2a.+2, j.+2), where  the funct ion 

M is def ined as in the l e m m a  above.  Since/ .+2 > h.+~, this condi t ion will enab le  

us to now construct  (n + 2) ' -blocks f rom (n + 1)-blocks so that  (12) is satisfied 

with n + 2 replacing n + 1. 

T h e  cutt ing and stacking process  associa ted to this b lock cons t ruc t ion  is 

similar  to the previous  one. Howeve r ,  to obta in  the (n + 1) ' - tower f rom the 

n - tower ,  each of the  r. co lumns  of the n - t o w e r  is now divided into j . + l +  1 

subco lumns  with widths in p ropor t ion  to a.÷~, • • ', a .+l,  1 - j.+la.+~. A b o v e  the 
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i th  subco lumn of the last co lumn,  1 =< i _-<j,÷~, m.+~,, levels are added,  and the  

points  in these levels are labeled 0. The  i th  subco lumn of each column,  

1 _-< i -< j.+ 1, is fur ther  divided up to construct  the i th g roup  of a .+ l h "+ ~ n-b locks ,  

with the m.+~,, O's at the end of each cycle coming f rom the added  levels. T h e  

(j.+, + 1)th subco lumn of each co lumn is used for  the independen t  conca tena t ion  

of n-b locks .  

Def ine  F,, F ' ,  X., X, v,, t,, T,, T',, T, ~ ,  ~ . ,  ~ ' ,  as before .  Let  /x~ = 

v. x • ! .  x t,., and /~J  = t, x • ! .  x v. No te  that  by (12) we have  

(13) ,,. ( x .  - x._1) a./j.. 

In part icular ,  this implies  that  X has finite Lebesgue  measure .  Also,  if 
i. 

B C X . - I  x . .  • x X._,  then 

Jn 
/~ ~-(B) _->/~ ~-_,(B) - (1 - / x  J.-(X._, x . . .  x X._~)) 

(14) 

=/z~-_,(B)-(1- t,.(X._,y-) 

> g ; o _ , ( B ) - i . ( 1  - , , . (Xo-1) )  

> g ' . ._ , (B) -  a.. 

T h e  same  a rgumen t s  as be fo re  show that  T has en t ropy  zero and that  T is a V 

t rans format ion ,  p rovided  ho, h ~, h,, hl ,  h2, • • • grow sufficiently rapidly.  

T o  p rove  that  T x • ! .  x T is LB for  each posi t ive in teger  j, we will establish 
/n 

the following var iant  of (3). For  each n _-> 1, there  is a set B .  C X .  x • -. x X ,  and 

an in teger  N ,  such that  

(15) 

Jn (a) /.t . ( B . )  > 1 - 6,, 
i. 

(b) B .  is a union of a toms  of 9~. x . . -  x 9~., 

(c) each point  of B .  is of  the fo rm (x , , .  •. ,  xj.) where  each x,, 

l=<i_-<]., has at least N . - 1  points  lying above  it in the 

n - tower ,  
- i  

(d) if p, q E B,,  then f~.(p,  q )  _- s,. 

H e r e  [ '  deno tes  the [ d is tance with respect  to ( T  x • ! .  × T ) - ( ~  x • ~. x ~ ) -  

names,  
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Fix, for  the m o m e n t ,  a posi t ive in teger  j. W e  will indicate  why (15) implies  that  

T × • ! .  × T is LB.  Choose  n = k,,, where  m => j. Then  j,  = m, and we have  a set 

B .  C X .  × • . '. × X .  wi th /x  7 (B , )  > 1 - 6, such that  f?v.(p, q)  --< s. if p, q E B.. Let  

It:  X ,  × .~. × X ,  --~ X,  × • ! .  × X .  be  the pro jec t ion  on to  the first j coordinates .  

Then  /z ~ (Tr (B. ) )  > 1 - 6,, and if p, q E 7r (B.) ,  f~,(p,  q)  =< s.. 

W e  p roceed  with the p roof  of (15). If n = kj.-1 + 1, then s, = 1 and  (15) is 

trivially satisfied. A s s u m e  that  kj.-1 + 1 < n =< k~. and that  there  exist B,-1, N,_~ 

such that  (15) holds with n rep laced  by n -  1. At  this point  

ho, h '1, ht, h ~, h2, • • ", h ',-1, h._~ have  been chosen,  and we must  now choose  h '., h.  

so that  (15) is satisfied. 

Choose  L ,  sufficiently large so that  

" "  S n  1 (l" + m'~O "(l" + m'~i") < 6 .  and ---L-~-<6,. 
L. 

Requi re  that  h ' .  be  sufficiently large so that  

(16) L--z" < e., 
h'. 

where  e. is chosen so that  ( a .  - e.)J- > a ~ - 26,. Fo r  1 =< i =< j., let A ,~ be  the set 

of x E X .  such that  x, Tx , . . . ,  TL.-~x are in the i th g roup  of a , h "  (n - 1)-blocks 

in some  n ' -b lock .  Let  A ,  = A~, × "- • x A~.  Suppose  p = (x~,. • -, xj.) ~ A, .  Then  

the T - ~ - L . - n a m e  of x~ has per iod  I. + m,.~, 1 _-__ i _-<j,; hence  the ( T +  .~". × T)-  

( ~  × .J". × ~ ) - L , - n a m e  of x has per iod  (k  + m,~,)- • • (/, + m,.~.). Thus,  if p, q E 

A.,  then 

(17) 

Also, we 

obta in  

-,. (l. + m,~ , ) . . .  (l. + m,~i. ) < 6.. 
f L"(P'q)<= L. 

have  v.  ~(A~ M X . _ ~ ) > a . - L . / h ' > a , , - e . .  Then,  using (14), we 

/ z . ( A . )  > / . t ._~(A.  A X._~ x • • • x X . _ , ) -  6. > ( a .  - e . ) ' -  - 6. > a ; 7 -  36., (18) " J" '° J 

which is ana logous  to (5). 

For tuna te ly ,  the prev ious  nesting a rgumen t  still works  here,  if we m a k e  the  

following minor  changes.  W e  change  all Car tes ian  p roduc t s  t o / o - f o l d  Car tes ian  
n Jn products ,  change  each a 2 to a . ,  and requi re  that  h,  be  suffÉciently large so that  
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N . / h .  < e ' ,  where e', is chosen so that ( 1 -  e ' )  i- < 1 -½~.  This completes the 

proof of (15). []  

§7. Generalization to flows 

We now obtain an example of a flow 4) = {4),: t E R} which is V and has 

x • ~. × ~ = {$, x • ~. x $, : t E R} LB for each positive integer n. This will be 

done by slightly altering the preceding construction and building a flow over the 

resulting transformation T and under a function g. 

Let a l ,  a2, " • ", 81, 8z, " • ", sl ,s2,  " • ", ko, k l ,  " • ", j~, j2, " • ", be as described in sec- 

tion 6. The present construction will be described in terms of these parameters 

and the positive integer parameters h0, h ~, hi, h6, hz," • • (which may be different 

from those in section 6). 

For  each n _-> 0, we will construct n-towers [(n + 1)'-towers] for T and for $, 

which will he referred to as T-n-towers  [ T - ( n  + 1)'-towers] and S-n- towers  [4)- 

(n + 1)'-towers], respectively. Let X, be the set of points in the T-n- tower  (or, 

equivalently, if n _-> 1, the T - n ' - t o w e r ,  since no material will be added in 

constructing the T-n- tower  from the T - n ' - t o w e r ) .  We will obtain the ~b-n'-  

tower from the T - n ' - t o w e r  as follows. Suppose C, T C , . . . ,  T ' C  are the levels 

constituting a column in the T - n ' - t o w e r .  The function g will be defined on X, so 

that g is constant on each T i C .  Let this constant be g ( T ~ C ) .  Then stack the 

rectangles C x [0, g ( C ) ) , . . . ,  T ' C  x [0, g ( T ' C ) )  in order. We will take this to be 

the corresponding column of the ~b-n'-tower. The construction of the ~b-n-tower 

from the T-n- tower  is similar. For n => 1, let 18, denote the sum of the heights of 

the columns in the 4,-(n - 1)-tower. 

We define a T-0-block to consist of a single symbol chosen from 

{1 , . . . ,  ho}, ho > max(l,  a l /60 ,  and we build the corresponding T-0-tower. Let /3  

be an irrational number greater than one. Define g on the T-0-tower by g =/3 at 

those points corresponding to the symbol 1, and g = 1 elsewhere. Then the 

~k-0-tower is obtained in the manner described above. 

Assume n _->0 is fixed for the moment  and that the T-n- tower  and the 

~k-n-tower have been constructed. Also assume that g has been defined on X,  

so that g is constant on each level of each column in the n-tower. If n => 1, 

assume in addition that numbers 

m l , l ~  • • o~ ~ ' [  1,jl~ m 2 , 1 ~  • • -~ m e . h ,  • " " ,  n ' l n . 1 ,  • • " ,  m , , . j .  

have been chosen so that 
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(i) 1 ,  f l ,  m 1 , 1 ,  • • ",  m l . j , ,  m 2 , b  • • " ,  n2. i2 ,  • • " ,  m,~a, • • " ,  m , ~ j .  are 

linearly independent over the rationals, 

(ii) for each i such that l_---i-<n, 

1 1 
1~+ mi,~' "" "' 1~ + mi. h 

(19) 
are linearly independent over the rationals, 

(iii) m ~ , + l - m ~ , > l  if 1_<-i < n  and l<_-t<j, ,  and 

/?1i+1.1 - -  m~.j, > 1 if 1 -< i < n, 

(iv) mtj, < j ~ + - - .  +j, if 1-< i =< n. 

The construction of T-(n + 1)'-blocks from T-n-blocks proceeds as before, 

except that only one 0 is added after each cycle of n-blocks in the beginning of 

the T-(n + 1)'-blocks. Choose m,+1,~,'' ", m,+l.j.+, so that (19) is still true with 

n + 1 replacing n. The T-(n + 1)-blocks are again constructed by independently 

concatenating h,+~ T-(n + 1)'-blocks. Here we require 

h.+, > q '  + " ' "  + ] .+ , ) ]L ,o , .+ ,  
~n+l 

Build the T-(n + I f - tower  and the T-(n + 1)-tower corresponding to these block 

constructions. Now define g on X .÷ I -  X. by setting g equal to m.÷l,~ at those 

points in the T-(n + 1)'-tower corresponding to O's added after each cycle in the 

ith group of a.÷lh '~÷~ n-blocks in the beginning of a T-(n + 1)'-block. Then g is 

constant on each level of each column in the T-(n + 1)'-tower. 

Let X =  U o X . ,  and for each A C X ,  define A * = { ( x , t ) : x E A ,  O<-_t< 
g(x)}. We will identify X~ with the points in the 4'-n-tower (or, equivalently, the 
4'-n'-tower if n _-> 1). Let 4' be the flow on X ~ built over T. Then 4' is the 

common extension of the partially defined flows .4' [.,(~] obtained by flowing 

upwards at unit speed in the 4'-n-tower [4'-n'-tower]. 
For each n => 0, let v. be the normalized Lebesgue product measure on X~. 

Then 

max j.a,, ~ /1+- "+ j . ) j . o l .<8 .  v. ( X ' . -  X'.,_,) < (,~, -J.,-..,~ < 
(20) v. (X~-,) l~ h.-, j. " 

Hence X ~ has finite Lebesgue product measure; normalize it and call it v. (Since 

g is bounded away from zero, X must therefore have finite Lebesgue measure.) 

Define /x~, /z j as before. By the same computation as for (14) we see that if 
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Jn 
B, CX~, × - - -×  X~, then /z~(B) > / x ~ - l ( B ) -  6,. Let ~ be the partition of X 

according to which of the labels {0,1,. . . ,h0} a point has, and let ~g = 

{Pg: P E ~} be the corresponding partition of X g. For each n [n'], let the 

to-n-blocks [to-n'-blocks] be the continuous to-~g-names of points in the bases 

of the columns of the to-n-tower [to-n'-tower], with the block lengths taken 

equal to the heights of the corresponding columns. Let ~ .  [ ~ ' ]  be the 
sigma-field on Xg, generated by sets of the form {(x, t): x E C, tl =< t =< t2}, where 

C is the base of a column in the to-n-tower [to-n'-tower] and 0 <- tl < t2 < g(C) .  

By the same argument as before, ~ generates under T and h ( T )  = h(T,  ~ )  = 

0. Thus h( to)= 0. 

We now indicate why to is V. 

It can be seen inductively that for each n _-> 0, there exists a number c which is 

a linear combination of 1,/3, m1,1," • ", rnl,jl," • ", mr~, " " ", m,~j. over the nonnega- 

tive integers such that one to-n-block has length c + 1 and another has length 

c +/3. (This is also true for the to-n'-blocks, if n => 1.) From (19(i)), it follows that 

c + 1 and c +/3 are linearly independent over the rationals. In particular, this 

implies that the lengths of to-n-blocks [to-n'-blocks] are not arithmetic (i.e., do 

not lie in an arithmetic progression containing zero). Let ,4~ [, '~] be the flow on 

the t0-n-tower [to-n'-tower] built over ~, [~r.,], a Bernoulli shift on the base with 

independent generator consisting of the partition of the base according to the 

columns of the tower. (Then .q5 [.,~] is an extension of .to [,,to].) The flows ,4~ 

and ,~ are Bernoulli flows (see Ornstein [8], page 60). For the rest of this paper, 

we fix a choice of 3' > 0 which is small compared to rn 1,~, the minimum value of g. 
Then if ho, h~, h~, h~', h2, ' - -  grow sufficiently rapidly, property V can be 

obtained by approximating (to,, ~g)  by (,to, ~ )  and (,,to~, ~ )  in finite d. We 

will show next that ~ "  generates (the product Lebesgue sigma-field) under to,. 

Thus to, is V and, consequently, to is V. 
Note that the O's in the T-~-name of a point x E X cannot occur consecu- 

tively, and for each other symbol, there is only one corresponding value of g. 

This implies that for each (x, t )E  X g, the continuous to-dO-name of (x, t) 

determines both the T-~-name of x and the value of t. Hence the continuous to- 

~S-names separate points in X *. Since the different values g assumes on points 

of X labeled 0 are bounded apart by 1, and 3' is small compared to the minimum 

value of g, the discrete toe-in-name of any point in X ~ determines the 

continuous to-dO-name up to a possible translate of at most 3'. Thus, to show 

that the to,-~S-names separate points in X ~, it suffices to show that for each 

(x, t) G X g, the times at which the continuous to-~g-name of (x, t) changes from 

one symbol to another are dense mod 3' (i.e., in R/3"Z). Since the lengths of the 
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4'-n-blocks are not arithmetic, some 4'-n-block has length r/,, where r/, is not a 

rational multiple of 3'. Choose k, such that r/n, 2r/., • • ", k,r/, are ~.-dense mod 3'. 

Now if h tn+ 1 ~ k n / ( 1  - -  jn+lO/n+l), there is some 4'-(n + 1)'-block in which the above 

4'-n-block of length r/. occurs consecutively k. times. Thus, if this 4'-(n + 1)'- 

block occurs in the 4 ' - ~ - n a m e  of a point (x, t), then the times at which the 4'- 

~ - n a m e  changes are 8,-dense mod 3'. But this happens for every (x, t ) E  X g, 

because, by construction, each 4'-(n + 2)'-block contains each 4'-(n + 1)'-block. 

Since l i m ~ ,  = 0, this implies that if ho, h'x, hi, h~', h~, . . ,  grow sufficiently 

rapidly, then the times at which the continuous 4 ' -~g-name of any point in X ~ 

changes are dense mod 3'. Consequently, ~ generates under 4',. 

We now turn to the proof that 4' x • ~. × 4' is LB for each positive integer j. A 

flow is defined to be LB if some (and hence every) cross-section is LB. It is shown 
in the Weiss Notes [16] that this is equivalent to each of the following: 

(i) each transformation in the flow is LB (or has LB components), 

(ii) some transformation in the flow is LB. 
J 

Thus it suffices to show that (4', × • !. x 4' ,  ~ × . . .  × ~*)  is LB for each j. We 

do this by showing that (15) holds with X. replaced by X~, the 17 j distance now 

denoting the ) 7 distance with respect to (4'~ × • *. x 4 ' , ) - ( ~  × • ./. x ~*)-names, 
and with (c) replaced by 

(c') each point of B, is of the form ((x~, t~), • •., (xj,, ti.)) where t, + 3"(N,  - 1) is 

less than the length of the 4'-n-block containing (x~, t,), 1 <= i <= j.. 

This argument is very similar to that in section 6, so we will only briefly 

indicate the necessary modifications. The case n = kj_~ + 1 is again trivial; so 

assume kj_l + 1 < n =< kj~ and there exist B,_~, N,-1, so that the analogue of (15) 

given above holds with n replaced by n - 1. To choose L., proceed as follows. 

Let ~,~ = l*~ + m,~, and let ,~ be the flow at unit speed on each coordinate of 

T~, x . . .  x T~,j, where T~ = R / ~ Z ,  with normalized Lebesgue measure. Put a 

partition .~,~ on T~,, such that the continuous ~,~,-.$-name of length ~,~ of 

0 E Te~, is obtained by listing the 4'-(n - 1)-blocks in order once (the order being 

determined by the corresponding T - ( n  - 1)-blocks) and then adding an interval 

of length m,~ labeled 0; i.e., the ~,~,-.~-name of length ~,~ is the same as one 

period in the ith type of cycle in the beginning of a qb-n'-block. Since . ~  is 

isomorphic to a rotation by (3"/~,~,-.-, ~//~,~j~) on T × . - - x  T, and by (19 (ii)) 

3"/~,~x,"" ", 3'/~,~j~ are linearly independent over the rationals, we have, if L,  is 

-'° ) < ~. for all x, y E T~ , x × T~j .  (Here we are sufficiently large, f ~o..,,(x, y .. . . .  

taking the 17-distance between .~b~-(.~,~ × . . .  x ~,~i.)-names of length L,.) Re- 

quire, in addition, that L~ be sufficiently large so that N . _ t / L .  < ~.. Instead of 

(16), require that h" be sufficiently large so that 
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Lny/h" < e~ 

where  en is again chosen  so that (a~ - en) i~ > a } -  2 ~ .  For  1 -< i -<j,,  let A .  ~ be  

the set of  x E X ,  such that {4~,(x): 0 =< t =<_ (Ln - 1)3,} is conta ined  in the  i th type 

of  cycle  in the beginning of  a ~b-n'-block. Let An = A ~ x . . . x A } .  Then  

A~ ~E ~ "  x . . -  x ~ "  and we again have 

f'L..,.(p,q)<~3~ ifp, q EA~ and / ~ ( A . ) > a ~ - 3 ~ .  

Consider again the Bernoulli flow .4; defined earlier, and, in particular, .4;,- 

T h e  ergodic  t h e o r e m  is appl ied twice  to  the  process  (,4~, x • (". x ~4~,, ,ft. v ~ ,_~) ,  

w h e r e  ~ = {Am, X .  - Am}, ~3~_~ = {B._~, X - B,-1}, in order  to  set up the  nest ing 

argument  as in sect ion  5. N o t e  that s ince s~, v N._~ is ~ "  x • ~. x ~ ' - m e a s u r a b l e ,  

the distribution of  the (~4,, x -J~. x ~4~,, M', v ~ _ ~ )  process  does  not  depend  on h~. 

W e  then select  h,, and finish the  argument  as in sect ion 6, with a f ew  o b v i o u s  

changes .  [ ]  

I,  
2. 

16-38. 
3. 
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